Enhanced tree clustering with single pronunciation dictionary for conversational speech recognition
نویسندگان
چکیده
Modeling pronunciation variation is key for recognizing conversational speech. Rather than being limited to dictionary modeling, we argue that triphone clustering is an integral part of pronunciation modeling. We propose a new approach called enhanced tree clustering. This approach, in contrast to traditional decision tree based state tying, allows parameter sharing across phonemes. We show that accurate pronunciation modeling can be achieved through efficient parameter sharing in the acoustic model. Combined with a single pronunciation dictionary, a 1.8% absolute word error rate improvement is achieved on Switchboard, a large vocabulary conversational speech recognition task.
منابع مشابه
Flexible Parameter Tying for Conversational Speech Recognition
Modeling pronunciation variation is key for recognizing conversational speech. Previous efforts on pronunciation modeling by modifying dictionaries only yielded marginal improvement. Due to complex interaction between dictionaries and acoustic models, we believe a pronunciation modeling scheme is plausible only when closely coupled with the underlying acoustic model. This paper explores the use...
متن کاملRecognizing Sloppy Speech
As speech recognition moves from labs into the real world, the sloppy speech problem emerges as a major challenge. Sloppy speech, or conversational speech, refers to the speaking style people typically use in daily conversations. The recognition error rate for sloppy speech has been found to double that of read speech in many circumstances. Previous work on sloppy speech has focused on modeling...
متن کاملSpeaking mode dependent pronunciation modeling in large vocabulary conversational speech recognition
In spontaneous conversational speech there is a large amount of variability due to accents, speaking styles and speaking rates (also known as the speaking mode) [3]. Because current recognition systems usually use only a relatively small number of pronunciation variants for the words in their dictionaries, the amount of variability that can be modeled is limited. Increasing the number of varian...
متن کاملImproving pronunciation modeling for non-native speech recognition
In this paper, three different approaches to pronunciation modeling are investigated. Two existing pronunciation modeling approaches, namely the pronunciation dictionary and n-best rescoring approach are modified to work with little amount of non-native speech. We also propose a speaker clustering approach, which capable of grouping the speakers based on their pronunciation habits. Given some s...
متن کاملPronunciation Modeling for Large Vocabulary Speech Recognition by Arthur
The large pronunciation variability of words in conversational speech is one of the major causes of low accuracy for automatic speech recognition (ASR). Many pronunciation modeling approaches have been developed to address this problem. Some explicitly manipulate the pronunciation dictionary as well as the set of the units used to define the pronunciations of words. Others model the pronunciati...
متن کامل